Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 633
Filtrar
1.
Microb Cell Fact ; 23(1): 118, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659044

RESUMO

BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.


Assuntos
Álcool Desidrogenase , Etanol , Probióticos , Humanos , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Etanol/metabolismo , Lactobacillus/metabolismo , Lactobacillus/genética , Lactobacillales/genética , Lactobacillales/metabolismo , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Pediococcus acidilactici/metabolismo
2.
Arch Microbiol ; 206(4): 184, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503937

RESUMO

The pit mud in the Baijiu fermentation cellar is an abundant microbial resource that is closely related to the quality of baijiu. However, many naturally existing species might be in a viable but nonculturable (VBNC) state, posing challenges to the isolation and application of functional species. Herein, a previously isolated strain from baijiu mash, Umezawaea beigongshangensis, was found to contain the rpf gene that encodes resuscitation promotion factor (Rpf). Therefore, the gene was cloned and heterologously expressed, and the recombinant protein (Ub-Rpf 2) was purified. Ub-Rpf 2 was found to significantly promote the growth of resuscitated VBNC state Corynebacterium beijingensis and Sphingomonas beigongshangensis. To determine the resuscitation effect of Ub-Rpf 2 on real ecological samples, the protein was supplemented in pit mud for enrichment culture. Results revealed that specific families and genera were enriched in abundance upon Ub-Rpf 2 incubation, including a new family of Symbiobacteraceae and culturable Symbiobacterium genus. Furthermore, 14 species belonging to 12 genera were obtained in Ub-Rpf 2 treated samples, including a suspected novel species. This study lays a foundation for applying Rpf from U. beigongshangensis to exploit microbial resources in baijiu pit mud.


Assuntos
Actinomycetales , Lactobacillales , Bactérias/genética , Actinomycetales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Lactobacillales/metabolismo
3.
Food Res Int ; 182: 114179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519191

RESUMO

Co-culture fermentation with yeast and lactic acid bacteria (LAB) exhibits advantages in improving the bioactivity and flavor of wheat bran compared to single-culture fermentation, showing application potentials in bran-containing Chinese steamed bread (CSB). To explore the effects of combination of yeast and different LAB on the bioactivity and flavor of fermented wheat bran, this study analyzed the physicochemical properties, phytate degradation capacity, antioxidant activities, and aroma profile of wheat bran treated with co-culture fermentation by Saccharomycopsis fibuligera and eight different species of LAB. Further, the phenolic acid composition, antioxidant activities, texture properties, aroma profile, and sensory quality of CSB containing fermented wheat bran were evaluated. The results revealed that co-culture fermentation brought about three types of volatile characteristics for wheat bran, including ester-feature, alcohol and acid-feature, and phenol-feature, and the representative strain combinations for these characteristics were S. fibuligera with Limosilactobacillus fermentum, Pediococcus pentosaceus, and Latilactobacillus curvatus, respectively. Co-culture fermentation by S. fibuligera and L. fermentum for 36 h promoted acidification with a phytate degradation rate reaching 51.70 %, and improved the production of volatile ethyl esters with a relative content of 58.47 % in wheat bran. Wheat bran treated with co-culture fermentation by S. fibuligera and L. curvatus for 36 h had high relative content of 4-ethylguaiacol at 52.81 %, and exhibited strong antioxidant activities, with ABTS•+ and DPPH• scavenging rates at 65.87 % and 69.41 %, respectively, and ferric reducing antioxidant power (FRAP) at 37.91 µmol/g. In addition, CSB containing wheat bran treated with co-culture fermentation by S. fibuligera and L. fermentum showed a large specific volume, soft texture, and pleasant aroma, and received high sensory scores. CSB containing wheat bran treated with co-culture fermentation by S. fibuligera and L. curvatus, with high contents of 4-ethylguaiacol, 4-vinylguaiacol, ferulic acid, vanillin, syringaldehyde, and protocatechualdehyde, demonstrated strong antioxidant activities. This study is beneficial to the comprehensive utilization of wheat bran resources and provides novel insights into the enhancement of functions and quality for CSB.


Assuntos
Guaiacol/análogos & derivados , Lactobacillales , Saccharomycopsis , Lactobacillales/metabolismo , Pão/análise , Fibras na Dieta/análise , Odorantes , Antioxidantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Fítico , Técnicas de Cocultura , Fermentação , China
4.
Food Chem ; 448: 138959, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552464

RESUMO

This study aimed to investigate the interaction between L.casei and L.bulgaricus with Polygonatum sibiricum saponins (PSS) and to explore the co-microencapsulation to reduce their loss rate during storage and consumption. 1% PSS was added to the culture broth, and it was found that the growth and metabolism of the strains were accelerated, especially in the compound probiotic group, indicating that PSS has potential for prebiotics. LC-MS observed significant differences in the composition and content of saponins in PSS. The metabolomics results suggest that the addition of PSS resulted in significant changes in the metabolites of probiotics. In addition, it was found that the combination of probiotics and PSS may have stronger hypoglycemic ability (ɑ-glucosidase, HepG2). Finally, a co-microencapsulated delivery system was constructed using zein and isomaltooligosaccharide. This system can achieve more excellent resistance of probiotics and PSS in gastrointestinal fluids, effectively transporting both to the small intestine.


Assuntos
Composição de Medicamentos , Polygonatum , Probióticos , Saponinas , Saponinas/química , Saponinas/metabolismo , Saponinas/farmacologia , Humanos , Probióticos/metabolismo , Probióticos/química , Polygonatum/química , Polygonatum/metabolismo , Prebióticos/análise , Lactobacillus/metabolismo , Lactobacillus/química , Lactobacillus/crescimento & desenvolvimento , Lactobacillales/metabolismo , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/química
5.
Carbohydr Polym ; 332: 121905, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431412

RESUMO

Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Humanos , Glicosaminoglicanos/metabolismo , Bacteroides/metabolismo , Lactobacillales/metabolismo , Heparina , Heparitina Sulfato
6.
Nutrients ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474811

RESUMO

Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host's health.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Nisina , Camundongos , Animais , Nisina/metabolismo , Nisina/farmacologia , Leite/metabolismo , RNA Ribossômico 16S/genética , Lactobacillales/metabolismo , Ácido Butírico
7.
Toxins (Basel) ; 16(2)2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38393159

RESUMO

Toxin-antitoxin systems are preserved by nearly every prokaryote. The type II toxin MazF acts as a sequence-specific endoribonuclease, cleaving ribonucleotides at specific sequences that vary from three to seven bases, as has been reported in different host organisms to date. The present study characterized the MazEF module (MazEF-sth) conserved in the Symbiobacterium thermophilum IAM14863 strain, a Gram-negative syntrophic bacterium that can be supported by co-culture with multiple bacteria, including Bacillus subtilis. Based on a method combining massive parallel sequencing and the fluorometric assay, MazF-sth was determined to cleave ribonucleotides at the UACAUA motif, which is markedly similar to the motifs recognized by MazF from B. subtilis (MazF-bs), and by several MazFs from Gram-positive bacteria. MazF-sth, with mutations at conserved amino acid residues Arg29 and Thr52, lost most ribonuclease activity, indicating that these residues that are crucial for MazF-bs also play significant roles in MazF-sth catalysis. Further, cross-neutralization between MazF-sth and the non-cognate MazE-bs was discovered, and herein, the neutralization mechanism is discussed based on a protein-structure simulation via AlphaFold2 and multiple sequence alignment. The conflict between the high homology shared by these MazF amino acid sequences and the few genetic correlations among their host organisms may provide evidence of horizontal gene transfer.


Assuntos
Toxinas Bacterianas , Clostridiales , Proteínas de Escherichia coli , Lactobacillales , Proteínas de Escherichia coli/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Escherichia coli/genética , Lactobacillales/metabolismo , Endorribonucleases/metabolismo , Ribonucleotídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética
8.
Meat Sci ; 212: 109472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38422590

RESUMO

The aim of this study was to assess whether ultrasound treatment (sonification time: 5, 15, and 30 min; constants: ∼40 kHz, ∼2.5 W cm2) can be applied prior to hydrolysis to enhance the anti-radical and angiotensin converting enzyme inhibiting (anti-ACE) effect of the hydrolysates from fermented pork loins. Enzymatic hydrolysis was performed using pepsin, followed by pancreatin. The influence of meat matrix on the course of hydrolysis, shaped using a lactic acid bacteria (LAB)-based starter culture, was also analyzed. It was found that proteases caused a systematic increase in the content of peptides, while pancreatin limited the peptide content in the protein hydrolysate from the loins subjected to spontaneous fermentation. Moreover, for these tests, sonication time had a negligible effect on the peptides content of the hydrolysates. On the other hand, for the sample of LAB-fermented products, both sonication time and stage of hydrolysis promoted the biological activity of the hydrolysates. Samples from the LAB-fermented meat had more peptides at the stage of digestion with pepsin and pancreatin, exhibiting much faster antiradical and anti-ACE activity compared to the control sample. The obtained results suggest that the use of LAB promotes the release of antiradical peptides during the two-step enzymatic hydrolysis, the duration of which can be shortened to achieve satisfactory biofunctionalities. Additional application of sonication pretreatment allows controlling the course of the hydrolysis, as the pro-health, biological effect of some protein-derived sequences is associated with the content of peptides.


Assuntos
Lactobacillales , Carne de Porco , Carne Vermelha , Animais , Suínos , Peptidil Dipeptidase A/metabolismo , Hidrolisados de Proteína/química , Pepsina A , Pancreatina/metabolismo , Sonicação , Peptídeos/química , Hidrólise , Lactobacillales/metabolismo
9.
Appl Environ Microbiol ; 90(3): e0193623, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376234

RESUMO

In the context of sustainable diet, the development of soy-based yogurt fermented with lactic acid bacteria is an attractive alternative to dairy yogurts. To decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice (SJ) fermentation, the whole genome of the strain CIRM-BIA865 (Ld865) was sequenced and annotated. Then Ld865 was used to ferment SJ. Samples were analyzed throughout fermentation for their cell number, carbohydrate, organic acid, free amino acid, and volatile compound contents. Despite acidification, the number of Ld865 cells did not rise, and microscopic observations revealed the elongation of cells from 3.6 µm (inoculation) to 36.9 µm (end of fermentation). This elongation was observed in SJ but not in laboratory-rich medium MRS. Using transcriptomic analysis, we showed that the biosynthesis genes of peptidoglycan and membrane lipids were stably expressed, in line with the cell elongation observed, whereas no genes implicated in cell division were upregulated. Among the main sugars available in SJ (sucrose, raffinose, and stachyose), Ld865 only used sucrose. The transcriptomic analysis showed that Ld865 implemented the two transport systems that it contains to import sucrose: a PTS system and an ABC transporter. To fulfill its nitrogen needs, Ld865 probably first consumed the free amino acids of the SJ and then implemented different oligopeptide transporters and proteolytic/peptidase enzymes. In conclusion, this study showed that Ld865 enables fast acidification of SJ, despite the absence of cell division, leads to a product rich in free amino acids, and also leads to the production of aromatic compounds of interest. IMPORTANCE: To reduce the environmental and health concerns related to food, an alternative diet is recommended, containing 50% of plant-based proteins. Soy juice, which is protein rich, is a relevant alternative to animal milk, for the production of yogurt-like products. However, soy "beany" and "green" off-flavors limit the consumption of such products. The lactic acid bacteria (LAB) used for fermentation can help to improve the organoleptic properties of soy products. But metabolic data concerning LAB adapted to soy juice are lacking. The aim of this study was, thus, to decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during fermentation of a soy juice, based on a multidisciplinary approach. This result will contribute to give tracks for a relevant selection of starter. Indeed, the improvement of the organoleptic properties of these types of products could help to promote plant-based proteins in our diet.


Assuntos
Lactobacillales , Lactobacillus delbrueckii , Animais , Fermentação , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Aminoácidos/metabolismo , Soja , Sacarose/metabolismo , Lactobacillus delbrueckii/genética , Iogurte/microbiologia
10.
Folia Microbiol (Praha) ; 69(2): 305-321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372951

RESUMO

Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.


Assuntos
Alimentos Fermentados , Lactobacillales , Lactobacillales/metabolismo , Microbiologia de Alimentos , Fermentação , Indústria Alimentícia , Alimentos Fermentados/microbiologia
11.
J Food Sci ; 89(2): 834-850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38167751

RESUMO

Lactic acid fermentation is an effective method for improving the quality of black chokeberry. This study aimed to investigate the influence of lactic acid bacteria on the phenolic profile, antioxidant activities, and volatiles of black chokeberry juice. Initially, 107  cfu/mL of Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Lacticaseibacillus rhamnosus were inoculated into pasteurized black chokeberry juice and fermented for 48 h at 37°C. All these strains enhanced the total phenolic and total flavonoid contents, with La. acidophilus showing the highest total phenolic (1683.64 mg/L) and total flavonoid (659.27 mg/L) contents. Phenolic acids, flavonoids, and anthocyanins were identified using ultrahigh-performance liquid chromatography-tandem mass spectrometry. The prevalent phenolic acid, flavonoid, and anthocyanin in the lactic-acid-fermented black chokeberry juice were cinnamic acid, rutin, and cyanidin-3-O-rutinoside, respectively. Furthermore, following fermentation, the DPPH and ABTS scavenging capacity, as well as the reducing power capacity, increased from 59.98% to 92.70%, 83.06% to 94.95%, and 1.24 to 1.82, respectively. Pearson's correlation analysis revealed that the transformation of phenolic acids, flavonoids, and anthocyanins probably contributed to enhancing antioxidant activities and color conversation in black chokeberry juice. A total of 40 volatiles were detected in the fermented black chokeberry juice by gas chromatography-ion mobility spectrometry. The off-flavor odors, such as 1-penten-3-one and propanal in the black chokeberry juice, were weakened after fermentation. The content of 2-pentanone significantly increased in all fermented juice, imparting an ethereal flavor. Hence, lactic acid fermentation can effectively enhance black chokeberry products' flavor and prebiotic value, offering valuable insights into their production. PRACTICAL APPLICATION: The application of lactic acid bacteria in black chokeberry juice not only enhances its flavor but also improves its health benefits. This study has expanded the range of black chokeberry products and offers a new perspective for the development of the black chokeberry industry.


Assuntos
Lactobacillales , Photinia , Antioxidantes/química , Antocianinas , Ácido Láctico/análise , Photinia/química , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/análise , Flavonoides , Lactobacillus acidophilus/metabolismo , Lactobacillales/metabolismo
12.
J Agric Food Chem ; 72(5): 2718-2726, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275205

RESUMO

Glycation reactions in food lead to the formation of the Amadori rearrangement product (ARP) N-ε-fructosyllysine (fructoselysine, FL), which is taken up with the daily diet and comes into contact with the gut microbiota during digestion. In the present study, nine commercially available probiotic preparations as well as single pure strains thereof were investigated for their FL-degrading capability under anaerobic conditions. One of the commercial preparations as well as three single pure strains thereof was able to completely degrade 0.25 mM FL within 72 h. Three new deglycating lactic acid bacteria species, namely, Lactobacillus buchneri DSM 20057, Lactobacillus jensenii DSM 20557, and Pediococcus acidilactici DSM 25404, could be identified. Quantitative experiments showed that FL was completely deglycated to lysine. Using 13C6-labeled FL as the substrate, it could be proven that the sugar moiety of the Amadori product is degraded to lactic acid, showing for the first time that certain lactic acid bacteria can utilize the sugar moiety as a substrate for lactic acid fermentation.


Assuntos
Lactobacillales , Probióticos , Lisina/metabolismo , Bactérias/metabolismo , Lactobacillales/metabolismo , Açúcares , Ácido Láctico
13.
Food Chem ; 442: 138416, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241988

RESUMO

The health benefits of fermented fruits have attracted consumers' attention. High levels of antioxidant ability in the fermented kiwifruit extract were found at the early stage of fermentation. The co-fermention with Lactobacillus paracasei LG0260 and Kluyveromyces marxianus J2853 showed the highest ABTS radical scavenging ability (ABTS⋅+-SA) and superoxide dismutase (SOD) activity. Also, the typical antioxidant components of SOD activity, vitamin C concentration and total phenol content were highly correlated with ABTS⋅+-SA. Obviously, polyphenols in the fermented kiwifruit extract evolved into monophenols during fermentation. Compared to undigested samples, the activity of ABTS⋅+-SA and reducing power capacity (RP-CA) after the final intestinal digestion decreased and ranged 387.44-531.89 VCµg/mL, 650.95-981.63 VCµg/mL, respectively (P < 0.05). Meanwhile, SOD activity on the 10th day of fermentation were still remained 222.82 U/mL, 206.98 U/mL and 217.23 U/mL, respectively. These results suggested that the fermented kiwifruit extract could exhibit antioxidant activity through tolerance to the digestive environment.


Assuntos
Antioxidantes , Benzotiazóis , Lactobacillales , Ácidos Sulfônicos , Antioxidantes/metabolismo , Lactobacillales/metabolismo , Extratos Vegetais , Superóxido Dismutase , Digestão , Fermentação
14.
Food Microbiol ; 119: 104447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225049

RESUMO

Yarrowia lipolytica N12 and A13 with high lipase activity obtained by mutagenesis were inoculated into sour meat, and their effects on physicochemical properties, microbial community succession, free amino acids, and volatile compounds of sour meat were investigated. Inoculation fermentation increased the contents of free amino acids observably, rapidly reduced pH, promoted the accumulation of total acids, decreased 2-thiobarbituric acid reactive substances (TBARS) values. In addition, the addition of Y. lipolytica might contribute to the growth of lactic acid bacteria, Candida spp., and Debaryomyces udenii, which play an important role in production of volatile compounds. It was shown that inoculation promoted the production of esters, aldehydes, and alcohols, especially ethyl esters, giving sour meat a better meat flavor. Besides, it was found that Y. lipolytica A13 had better fermenting property. Sample of A13 group had higher contents of ethyl esters, free amino acids and dominant microorganisms. The results may help to provide new strains for sour meat fermentation.


Assuntos
Lactobacillales , Saccharomycetales , Yarrowia , Yarrowia/genética , Ésteres/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Fermentação , Aminoácidos/metabolismo , Carne
15.
Food Res Int ; 176: 113824, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163724

RESUMO

This research paper focuses on the application of the "Design-Build-Test-Learn" framework to design and evaluate a synthetic microbial community aimed at studying the impact of Lactic Acid Bacteria (LAB) interactions and fitness on the formation of biogenic amines (BAs) in Chinese rice wine (CRW). The study reveals a close correlation between the assembly model of LAB and the accumulation of BAs in CRW, and multiple interactions were observed between amine-producing and non-amine-producing LAB, including commensalism, amensalism, and competition. The commensalism among amine-producing LAB was found to promote BAs accumulation through metabolic cross-feeding of amino acids. Moreover, the higher-order interaction community was designed to regulate the BAs formation effectively. For instance, the interference of Lactiplantibacillus plantarum (ACBC271) resulted in the elimination of amine-producing LAB viability, resulting in a 22% decrease (not exceeding 43.54 mg/L) in the total amount of BAs. Simulation of community dynamics models further suggests that LAB with quantitative social interactions can effectively control LAB accumulation in CRW by forecasting fluctuation in BAs generation through fitness competition and metabolic interference. Overall, this study provides valuable insights into the complex interaction networks within microbial communities in traditional fermentation ecosystems. It also proposes a novel approach for quality control of nitrogen food safety factors in fermented foods.


Assuntos
Lactobacillales , Vinho , Vinho/análise , Ecossistema , Aminas Biogênicas/análise , Lactobacillales/metabolismo , China
16.
Food Funct ; 15(3): 1612-1626, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38240339

RESUMO

Juice fermented with lactic acid bacteria (LAB) has received attention due to its health benefits, such as antioxidant and anti-inflammatory. Previous research on LAB-fermented goji juice mainly focused on exploring the changes in the metabolite profile and antioxidant activity in vitro, whereas the liver protection properties of LAB-fermented goji juice in vivo are still unknown. This study aimed to investigate the effects of Lacticaseibacillus paracasei E10-fermented goji juice (E10F), Lactiplantibacillus plantarum M-fermented goji juice (MF), Lacticaseibacillus rhamnosus LGG-fermented goji juice (LGGF) on preventing acute alcoholic liver injury with physiology, gut microbial, and metabolic profiles in mice. Compared with goji juice, E10F, MF, and LGGF enhanced the protective effect against liver injury by reducing serum alanine transaminase (ALT) levels, improving the hepatic glutathione (GSH) antioxidant system, and attenuating inflammation by decreasing the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-ß. Furthermore, E10F, MF, and LGGF increased intestinal integrity, restructured the gut microbiota including Bacteroides and Lactobacillus, and altered gut microbial metabolites including kyotorphin, indolelactic acid, and N-methylserotonin. Pretreatment of different LAB-fermented goji juice in mice showed significant differences in gut microbiota and metabolism. The correlation analysis demonstrated that the increase of Lactobacillus, indolelactic acid, and N-methylserotonin by E10F, MF, and LGGF was positively correlated with reduced inflammation and improved liver and gut function. Taken together, E10F, MF, and LGGF all have the potential to be converted into dietary interventions to combat acute alcoholic liver injury. It provided a reference for the study of the hepatoprotective effect of LAB-fermented goji juice.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Lycium , Serotonina/análogos & derivados , Camundongos , Animais , Lycium/metabolismo , Antioxidantes/metabolismo , Fermentação , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Etanol/metabolismo
17.
Microbiol Spectr ; 12(2): e0234522, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38169289

RESUMO

Weaning is a stressful event in the pig life cycle. We hypothesized that probiotics could be potential alternatives to antibiotics for promoting growth and ameliorating stress in weaning piglets via gut microbiota modulation and, thus, investigated the beneficial effects of dietary probiotic supplementation in weaning pigs. Ninety weaning piglets (Landrace × large white, 45 males and 45 females, 25 days of age) were randomized into three dietary treatments (30 piglets/treatment, divided into five replicates/treatment, i.e., six piglets/replicate) in this 28-day trial: control (C group, basal diet); probiotic [lactic acid bacteria (LAB) group, basal diet plus Lactiplantibacillus plantarum P-8]; and antibiotic (A group; basal diet plus chlortetracycline). The piglets' growth performance [average daily gain, average daily feed intake (ADFI), and feed conversion ratio (FCR)], immune and antioxidant markers, ileal mucosal morphology, and ileal and colonic microbiomes were compared among treatment groups. Compared to the C and A groups, probiotic supplementation significantly decreased the ADFI, FCR, and ileal mucosal crypt depth while increasing the villus height-to-crypt depth ratio, hepatic glutathione peroxidase and catalase activities, and serum levels of interleukin-2. Both probiotic and antibiotic treatments modulated the piglets' gut microbiomes, with more L. plantarum in the LAB group and more Eubacterium rectale and Limosilactobacillus reuteri in the A group. Probiotic supplementation significantly increased the relative abundance of genes encoding the acetylene, galactose, and stachyose degradation pathways, potentially enhancing nutrient absorption, energy acquisition, and growth performance. Probiotics are effective alternatives to antibiotics for promoting the health of piglets, possibly via gut microbiome modulation.IMPORTANCEWeaning impacts piglet health, performance, and mortality. Antibiotic treatment during weaning can mitigate the negative effects on growth. However, antibiotic use in livestock production contributes to the emergence of antibiotic resistance, which is a threat to global public health. This comprehensive study describes the gut microbial composition and growth performance of weaned piglets after dietary supplementation with Lactiplantibacillus plantarum P-8 or antibiotics. L. plantarum P-8 ameliorated stress and improved antioxidant capacity and growth performance in weaned piglets, accompanied by gut microbiota improvement. L. plantarum P-8 is an effective substitute for antibiotics to promote the health of weaned piglets while avoiding the global concern of drug resistance.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Lactobacillus plantarum , Feminino , Masculino , Animais , Suínos , Suplementos Nutricionais/análise , Antioxidantes/metabolismo , Desmame , Lactobacillales/metabolismo , Lactobacillus plantarum/metabolismo , Antibacterianos/farmacologia
18.
Int J Food Microbiol ; 412: 110550, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38199016

RESUMO

Vinegar has been used for centuries as a food preservative, flavor enhancer, and medicinal agent. While commonly known for its sour taste and acidic properties due to acetic acid bacteria metabolism, vinegar is also home to a diverse community of lactic acid bacteria (LAB). The main genera found during natural fermentation include Lactobacillus, Lacticaseibacillus, Lentilactobacillus, Limosilactbacillus, Leuconostoc, and Pedicoccus. Many of the reported LAB species fulfill the probiotic criteria set by the World Health Organization (WHO). However, it is crucial to acknowledge that LAB viability undergoes a significant reduction during vinegar fermentation. While containing LAB, none of the analyzed vinegar met the minimum viable amount required for probiotic labeling. To fully unlock the potential of vinegar as a probiotic, investigations should be focused on enhancing LAB viability during vinegar fermentation, identifying strains with probiotic properties, and establishing appropriate dosage and consumption guidelines to ensure functional benefits. Currently, vinegar exhibits substantial potential as a postbiotic product, attributed to the high incidence and growth of LAB in the initial stages of the fermentation process. This review aims to identify critical gaps and address the essential requirements for establishing vinegar as a viable probiotic product. It comprehensively examines various relevant aspects, including vinegar processing, total and LAB diversity, LAB metabolism, the potential health benefits linked to vinegar consumption, and the identification of potential probiotic species.


Assuntos
Lactobacillales , Lactobacillales/metabolismo , Fermentação , Ácido Acético/metabolismo , Bactérias , Lactobacillaceae/metabolismo
19.
Microb Biotechnol ; 17(1): e14387, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38263855

RESUMO

In the current trend where plant-based foods are preferred over animal-based foods, pulses represent an alternative source of protein but also of bioactive peptides (BPs). We investigated the pattern of protein hydrolysis during fermentation of red lentils protein isolate (RLPI) with various lactic acid bacteria and yeast strains. Hanseniaspora uvarum SY1 and Fructilactobacillus sanfranciscensis E10 were the most proteolytic microorganisms. H. uvarum SY1 led to the highest antiradical, angiotensin-converting enzyme-inhibitory and antifungal activities, as found in low molecular weight water soluble extracts (LMW-WSE). The 2039 peptide sequences identified by LMW-WSE were screened using BIOPEP UWM database, and 36 sequences matched with known BPs. Fermentation of RLPI by lactic acid bacteria and yeasts generated 12 peptides undetected in raw RLPI. Besides, H. uvarum SY1 led to the highest abundance (peak areas) of BPs, in particular with antioxidant and ACE-inhibitory activities. The amino acid sequences LVR and LVL, identified in the fermented RLPI, represent novel findings, as they were detected for the first time in substrates subjected to microbial fermentation. KVI, another BP highly characteristic of RLPI-SY1, was previously observed only in dried bonito. 44 novel potential BPs, worthy of further characterization, were correlated with antifungal activity.


Assuntos
Lactobacillales , Lens (Planta) , Animais , Lactobacillales/metabolismo , Lens (Planta)/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antifúngicos , Filogenia , Peptídeos/farmacologia , Leveduras/metabolismo , Fermentação
20.
Biol Trace Elem Res ; 202(2): 671-684, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37165259

RESUMO

Heavy metal pollution has become one of the most important global environmental issues. The human health risk posed by heavy metals encountered through the food chain and occupational and environmental exposure is increasing, resulting in a series of serious diseases. Ingested heavy metals might disturb the function of the gut barrier and cause toxicity to organs or tissues in other sites of the body. Probiotics, including some lactic acid bacteria (LAB), can be used as an alternative strategy to detoxify heavy metals in the host body due to their safety and effectiveness. Exopolysaccharides (EPS) produced by LAB possess varied chemical structures and functional properties and take part in the adsorption of heavy metals via keeping the producing cells vigorous. The main objective of this paper was to summarize the roles of LAB and their EPS in the adsorption and detoxification of heavy metals in the gut. Accumulated evidence has demonstrated that microbial EPS play a pivotal role in heavy metal biosorption. Specifically, EPS-producing LAB have been reported to show superior absorption, tolerance, and efficient abatement of the toxicity of heavy metals in vitro and/or in vivo to non-EPS-producing species. The mechanisms underlying EPS-metal binding are mainly related to the negatively charged acidic groups and unique steric structure on the surface of EPS. However, whether the enriched heavy metals on the bacterial cell surface increase toxicity to local mammal cells or tissues in the intestine and whether they are released during excretion remain to be elucidated.


Assuntos
Lactobacillales , Metais Pesados , Humanos , Lactobacillales/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Bactérias/metabolismo , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...